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PROBLEMS 

1. (Bulgaria 1994) A triangle ABC is given withp = ~(AB+BC+CA) . A circle ki 
touches the side BC and the sides AB, AC extended. A circle k touches ki and the 
incircle of D.ABC at points Q and P. Let R be the point of intersection of the line PQ 
and the bisector of L.BAC and RT be a tangent to k. Prove that RT = Jp(p- a). 

2. (Russia 2000) A positive inn is called perfect if the sum of all its positive divisors 
excluding n itself, equals n. For example 6 is perfect because 6 = 1 + 2 + 3. prove that 

(a) if a perfect integer larger than 6 is divisible by 3, then it is also divisible by 9. 

(b) if a perfect integer larger than 28 is divisible by 7, then it is also divisible by 49. 

3. (Russia 2000) Circles WI and w2 are internally tangent at N, with WI larger than 
w2. The chords BA and BC of WI are tangent to w2 at K and M, respectively. Let Q 
and P be the midpoints of the arcs AB and BC not containing the point N. Let the 
circumcircles of triangles BQK and BPM intersect at Band BI. Prove that BPBIQ 
is a parallelogram. 

4. (Taiwan 2000) Let A = { 1, 2, ... , n}, where n is a positive integer. A subset of 
A is connected if it is a nonempty set which consists of one element or of consecutive 
integers. Determine the greatest integer k for which A contains k distinct subsets AI, 
A2, ... , Ak, such that the intersection of any two distinct sets Ai and Ai is connected. 

5. (Turkey 2000) 

(a) Prove that for each positive integer n, the number of ordered pairs (x,y) of 
integers satisfying 

is finite and divisible by 6. 

(b) Find all ordered pairs ( x, y) of integers satisfying 

x 2 
- xy + y2 = 727. 

6. (Vietnam 2000) Two circles CI and C2 intersect at two points P and Q. The 
common tangent of CI and C2 closer to P touches CI at A and C2 at B. The tangent to 
CI at P intersects C2 at E (distinct from P) and the tangent to C2 at P intersects CI at 
F (distinct from P). Let Hand K be two points on the rays AF and BE, respectively, 
such that AH = AP, BK = BP. Prove that the five points A, H, Q, K, B lie on the 
same circle. 

7. (St. Petersburg 2000) One hundred points are chosen in the coordinate plane. 
Show that at most 2025 = 452 rectangles with vertices among these points have sides 
parallel to the axes. 
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8. (St. Petersburg 2000) Let AA1 , BB17 CC1 be the altitudes of an acute triangle 
ABC. The points A2 and C2 on line A1C1 are such that line CC1 bisects the segment 
A2B1 and line AA1 bisects the segment C2B1. Lines A2B1 and AA1 meet at K, and 
lines C2B1 and CC1 meet at L. Prove that lines KL and AC are parallel. 

9. (Korea 200) The real numbers a, b, c, x, y, z satisfy a 2:: b 2:: c > 0 and x 2:: y 2:: 
z > 0. Prove that 

10. (Mongolia 2000) The bisectors of angles A, B, C of D.ABC intersect its sides at 
points A1,B1,C1. Prove that if the quadrilateral BA1B1C1 is cyclic, then 

BC AC AB 
AC+AB AB+BC BC+AC' 

SOLUTIONS 
19th Iranian Mathematical Olympiad, 2001/2 

1. Let p and n be natural numbers such that p is a prime and 1 + np is a perfect 
square. Prove that n + 1 is the sum of p perfect squares. 

Correct solutions were received from Teo Weihao (National Junior College), Andre 
Kueh (Hwa Chong Junior College}, Joel Tay, Ernest Chong, Charmaine Sia (Raffles 
Junior College), Kenneth Tay (Anglo-Chinese Junior College). Their solutions are 
almost identical. 

Suppose 1 + np = k2 for some k E Z. Then np = ( k -1) ( k + 1). Since p is a prime, 
either pI (k -1) or pI (k + 1). For the first case, let sp = k -1. Then np = sp(sp+ 2) 
or 

n + 1 = s2p + 2s + 1 = (p- 1)s2 + (s + 1)2 

which is a sum of p squares. Similarly, for the second case, we have tp = k + 1 and 
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2. Triangle ABC is acute-angled. Triangles A' BC, B' AC, C' AB are constructed 
externally on its sides such that 

LA'BC = LB'AC = LC'BA = 30°; LA'CB = LB'CA = LC'AB = 60°. 

Show that if N is the midpoint of BC, then B' N is perpendicular to A' C'. 

Correct solutions were received from Joel Tay, Ernest Chong, Charmaine Sia {Raffies 
Junior College), Andre Kueh {Hwa Chong Junior College), Teo Weihao {National­
Junior College), Kenneth Tay {Anglo-Chinese Junior College) and Robert Pargeter 
(UK). We resent the solutions of Weihao and Kenneth. · 

Let X,Y,Z be the reflections of C,C,A about the lines A'B,AB',BC', respec­
tively. Consider the circumcircles of 6AZB and 6CXB with P, Q as their respective 
centres. Let D be another of the intersection points. Then we have 

LADB = LCDB = 120° => LADC = 120°. 

Therefore ADCY is cyclic since LADC + LAYC = 180°. Thus 

LDAC + LCAY + LDY A= LDYC + LCAY + LDY A= 120° = LADB. 

Hence B, D, Y are collinear. Thus BY j_ PQ. But PQ II A'C' (since BP/ BC' = 
BQ/BA') and BY II B'N (since N,B' are the midpoints of BC,YC, respectively). 
So A'C' _L B'N. 

y 

X 

3. Find all natural numbers n for which there exist n unit squares in the plane with 
horizontal and vertical sides such that the obtained figure has at least 3 symmetry 
axes. 
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Solved by Joel Tay, Ernest Chong (Raffles Junior College) and Andre Kueh (Hwa 
Chong Junior College). We present Kueh's solution. 

It is not possible to have 2 parallel axes of symmetry since the number of squares 
is finite. Since the sides of the squares are either horizontal or vertical, the axes are 
either horizontal, vertical or make an angle of 45° with the horizontal. Thus two of 
the axes are perpendicular to each other. Son= 0,1 (mod 4). 

The cells of square chess boards of any dimension are examples of figures that 
satisfy the requirement for all such n. 

4. Find all real polynomials p(x) which satisfy 

p(2p(x)) = 2p(p(x)) + 2(p(x))2 for all x E R. 

Similar solutions by Andre Kueh (Hwa Chong Junior College), Teo Weihao (National 
Junior College}, Joel Tay, Ernest Chong (Raffles Junior College) and Kenneth Tay 
(Anglo-Chinese Junior College). 

Let p(x) = anxn + an-lxn-l + · · · + ao, with an =/= 0. The terms with the highest 
degree in p(2(px)), 2p(p(x)), 2(p(x))2 are, respectively, 2na~+lxn

2

, 2a~+lxn
2

, 2a~x2n. 
So if n 2: 3, we must have 

which is impossible. Thus n ~ 2. So letting p(x) = ax2 + bx + c, we have 

2a2 (a -1)x4 + 4ab(a -1)x3 + 2(a -1)(2ac+ b2 )x2 + 4bc(a -1)x + c(2ac- 2c -1) = 0. 

Thus all the coefficients are 0. From a2(a- 1) = 0 we get a= 0 or a= 1. For a= 0, 
we get c = -1/2,0 and b = 0. For a= 1, we get c = 0 and no restriction on b. Thus 

p(x) = 0, p(x) _ -1/2, p(x) = x 2 + bx for arbitrary b 

are the required polynomials. 

5. In D. ABC with AB > AC, the bisectors of LB and LC meet the opposite sides 
respectively at P and Q. Let I be the intersection of these bisectors. If IP = IQ, 
determine LA. 

We present the similar solutions of Teo Weihao (National Junior College}, Andre 
Kueh (Hwa Chong Junior College), Joel Tay, Ernest Chong, Charmaine Sia (Raffles 
Junior College) and Kenneth Tay (Anglo-Chinese Junior College). Also solved by 
Robert Pargeter (UK). 

Using sine rule on D.AIQ and D.AIP, we get sinLAQI = sinLAPI. 

If LAQI = LAP!, we have AB = AC which is impossible. Thus LAQI + 
LAP!= 180°. This in turn implies that 180° = LABC+LQCB+LPCB+LACB = 
1.5(LABC +LACE. So LBAC = 60°. 

6. Find all functions f: R\{0}--+ R such that 

xf(x +.!) + yf(y) + '!!_ = yf(y +.!) + xf(x) + ~ 
y X X y 
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for all x, y E R \ { 0}. 

We present the similar solutions of Teo Weihao {National Junior College), Andre 
Kueh (Hwa Chong Junior College), Joel Tay, Ernest Chong, Charmaine Sia (Raffles 
Junior College) and Kenneth Tay (Anglo-Chinese Junior College). 

Define g(x) = f(x)- x, then after simplification we have 
1 1 

xg(x +-) + yg(y) = yg(y +-) + xg(x) 
y X 

(1) 

Set y = 1, we get 
1 

xg(x + 1) + g(1) = g(1 +-) + xg(x) 
X 

(2) 

Interchanging x with 1/x gives 
1 1 1 1 
-g(1 +-) + g(1) = g(x + 1) + -g(- ). 
X X X X 

So 
1 1 

g(l +-) = xg(x + 1) + g(-)- xg(1) 
X X 

(3) 

Equations (2) and (3) give 
1 

xg(x) + g(-) = (x + 1)g(1) 
X 

(4) 

Setting y = -1, we get similarly 
1 

xg(x)- g(-) = -g( -1)(x- 1) 
X 

(5) 

Equations ( 4) and (5) give 
2xg(x) =Ax+ B. 

So f(x) =A'+~' + x where A', B' are constants. 

7. Let AB be a diameter of a circle 0. Suppose that la, lb are tangent lines to 0 
at A, B, respectively. Cis an arbitrary point on 0. BC meets la at K. The bisector 
of L.C AK meets C K at H. M is the midpoint of the arc CAB and S is another 
intersection point of H M with 0. T is the intersection of lb and the tangent line to 
0 at M. Show that S, T, K are collinear. 

No correct solution was received. We present the official solution. 

D A 

B 
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Since AB is a diameter. LACB = goo. Extend TM to meet fa. at D. Then 
LTMB = LMCB = LMBC. Therefore TD II BK. Thus TDKB is a parallelogram. 
Let AH meet the circle at E. Then LEAC =LEAK= LEBA= LECA. Therefore 
AE = EC. As LACH =goo, we have AE = EC =HE. Since LAEB =goo, we 
haveAB=HB. 

Note that S, T, K are collinear iff 

HS HK 
SM MT 

Since AH is the bisector of LC AK, we have 

HK AK KB 
HC- AC- AB' 

Considering the power of H, we have 

HS·HM=HC·HB, => 

Thus ( 1) is equivalent to 

HK = KB·HC 
AB . 

Hs = HC·HB 
HM . 

HB KB 
_H_M_·_,S_M_ - AB · BT 

Since AB is the diameter, 

SM = ABsinLMBS = ABsinLMHB. 

(1) 

(2) 

The latter follows because LMHB = LDMH = LMBS. Thus (2) is equivalent to 

AB·BT=HM·KBsinMHB or [ABT]=[MKB] 

where [ · ] denote the area. Since TDKB is a parallelogram, we have [MKB] -
[T K B] = [ABT] and the proof is complete. 

8. Let k be a nonnegative integer and a1, a2, ... , an be integers such that there are 
at least 2k different integers mod ( n + k) among them. Prove that there is a subset 
of {a1 , a2, ... , an} whose sum of elements is divisible by n + k. 

Solved by Teo Weihao {National Junior College), Andre Kueh {Hwa Chong Junior 
College), Joel Tay, Ernest Chong {Raffles Junior College) and Kenneth Tay (Anglo­
Chinese Junior College). We present the solution by Charmaine Sia {Raffles Junior 
College). 
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Let a1, •.• , a2k be the 2k different integers mod ( n + k). Consider the sums: 

j 

Lai, j = 1,2, ... ,n 
i=l 

2j-l 
a2J+l + L ai, j = 1, 2, ... , k- 1 

i=l 



There are altogether n + k sums. If all the sums are distinct mod ( n + k), then one of 
them is 0 mod (n + k) and we are done. Now suppose that there are two sums which 
are congruent mod (n + k). Note that if two sums have the same number of terms, 
they cannot be congruent mod ( n + k). The two sums must have different number of 
terms. In this case, their difference is the sum of a subset and is 0 mod (n + k). 

9. Consider a permutation (a1 , a2 , ... , an) of {1, 2, ... , n}. We call this permuta­
tion quadratic if there exists at least one perfect square among the numbers a1 , a 1 + 
a2, •.. , a1 + a2 + · · · + an. Find all natural numbers n such that every permutation of 
{1, 2, ... , n} is quadratic. · 

We present solution of Andre Kueh (Hwa Chong Junior College) and Ernest Chong 
{Raffles Junior College). 

If n(n + 1)/2 is a square, then clearly every permutation of {1, 2, ... , n} is 
quadratic. We shall first characterize such n. Let n( n + 1) /2 = m2 • So 

(2n + 1)2
- 2(2m)2 = 1. 

Set x = 2n+ 1, y =2m, we get x2 - 2y2 = 1, which is a Pell's equation with primitive 
roots xo = 3, Yo= 2. So if (x, y) is a solution then 

X+ ..fiy = (3 + 2..J2)m, - m = 1, 2, ... 

Thus 
(3 + 2J2)m + (3 - 2J2)m - 2 

n= 
4 

, m=1,2, .... 

We now show that no other natural numbers have this property. 

Consider a permutation A= (a1,a2, ... ,an) of {1,2, ... ,n} where n(n + 1)/2 is 
not a square,. -Let sk(A) = E~=l ai. Let I be the identity permutation, i.e., ai = i for 
all i. Then sk(I) = k(k + 1)/2. Suppose k(k + 1) = m2 . Then k <2m. So 

(k+1)(k+2) 
...:..____.;.._:___ _ _:_ = m2 + k + 1 < m2 +2m+ 1 = (m + 1)2

• 
2 

If I' is the permutation obtained from I by interchanging k and k+1, then both sk(I') 
and Sk+l (I') are not perfect squares. Using this procedure, we can construct from I 
a permutation which is not quadratic. 

10. A cube of size 10, has 1000 blocks each of size 1, 500 of them are white and 
the others are black. Show that there exists at least 100 unit squares which are the 
common face of a white block and a black block. 

No correct solution was received. We present the official solution. 

We call a square a boundary face if it is the common face of a black and a white 
block. For any two blocks A, B of different colours, there is a unique path P AB which 
begins at A, goes parallel to the z, y and x axes in that order and ends at B. Each 
P AB passes through at least one boundary face. There are 1000 x 500 = 500000 such 
paths. Thus there are at least 500000 boundary faces, counting repetition. 
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Consider an arbitrary square S parallel to the xy plane. Assume that there are 
k blocks below it. For a path PAB to pass through S, A must be directly below S 
and B any block above the plane containing S or A is directly above S and B any 
block below the plane containing S. In the former, there are k x (100 x (10- k)) 
paths. In the latter, there are (10 - k) x (100 x k) paths. Thus each boundary 
face is counted 200k(10- k) ~ 5000 times. Thus the number of boundary faces is 
~ 500000/5000 = 100. 

Slovenia Mathematical Olympiad, 2002 

Selected problems from the final round. 

1. Let K be a circle in the plane, and K1, K2 be two disjoint circles inside K and 
touching Kat A, B, respectively. Lett be the common tangent line of K1 and K2 at 
C and D, respectively such that K1, K2 are on the same side of t while the centre of 
K is on the opposite side. Denote byE the intersection of lines AC and BD. Prove 
that E lies on K. 

Solved by Robert Pargeter {UK), Charmaine Sia, Ong Xing Gong, Ernest Chong, Joel 
Tay {Raffies Junior College), Andre Kueh (Hwa Chong Junior College), Teo Weihao 
{National Junior College). We present the similar solutions of Joel, Charmaine, Andre 
and Weihao. 

Let h be the homothety with centre A that maps K1 to K. Extend ACto meet 
KatE'. Then h maps t tot' which is the tangent of KatE'. Note that t II t'. 

Extend BD to meet K at E". Similarly, the homothety h' with centre B that 
takes K2 to K also take t to t", the tangent of K at E". Since t II t", we have t' = t". 
Thus E' = E" =E. 

(Note: Pargeter pointed that the location of 0 with respect tot is not important. 
The result remains true if all the three centres are on the same side of t. This is also 
evident from the solution given.) 

2. There are n ~ 3 sheets, numbered from 1 through n. The sheets are then divided 
into two piles and the task is to find out if in at least one pile two sheets can be found 
such that the sum of the corresponding numbers is a perfect square. Prove that 
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(a) if n ~ 15, then two such sheets can always be found; 

(b) if n ~ 14, then there is a division in which two such sheets cannot be found. 

Solved by Teo Weihao (National Junior College), Andre Kueh (Hwa Chong Junior 
College), Charmaine Sia, Ong Xing Gong, Ernest Chong, Joel Tay (Raffles Junior 
College), Kenneth Tay (Anglo-Chinese Junior College). We present their similar 
solutions. 

(a) Assume, on the contrary, that the sum of any pair of numbers in any of the 
piles is not a perfect square. Let the piles be A, B. Without loss of generality, assume 
that 1 E A. Then 

1 E A ~ 3 E B ~ 6 E A,~ 10 E B ~ 15 E A. 

This leads to a contradiction. 

(b) The following is an example. 

A= {1,2,4,6,9,11,13},B= {3,5,7,8,10,12,14}. 

3. Does there exist a function f : N --+ N such that 

f(f(2002)) = 17, f(mn) = f(m)f(n), and f(n) ~ n 

for every m, n E N? 

Solved by Teo Weihao (National Junior College), Andre Kueh (Hwa Chong Junior 
College), Charmaine Sia, Ong Xing Gong, Ernest Chong, Joel Tay (Raffles Junior 
College}, Kenneth Tay (Anglo-Chinese Junior College). We present their similar 
solutions. 

Since 2002 = 2 x 7 x 11 x 13, we have 

!(!(2002)) = f(f(2)f(7)f(ll)f(13)) = f(f(2))f(f(7))f(f(ll))f(f(13)) = 17. 

Thus f(f(2)), f(f(7)), f(f(ll)), f(f(13)) is a permutation of 1,1,1,17. But f(f(x)) ~ 
f ( x) ~ x. So the above cannot happen. Thus the function cannot exists. 

4. Let S = { a1 , ... , an} where ai are different positive integers. The sum of all 
numbers of any proper subset of the set S is not divisible by n. Prove that the sum 
of all numbers of the set S is divisible by n. 

Solved by Andre Kueh (Hwa Chong Junior College), Charmaine Sia, Ong Xing Gong, 
Ernest Chong, Joel Tay (Raffles Junior College), Kenneth Tay (Anglo-Chinese Junior 
College). We present their similar solutions. 

Let Si = a1 + · · · + ai, i = 1, ... , n. For 1 ~ i < j ~ n, Si - Si is the sum 
of a proper subset of S. Thus Si- Si ¢ 0 (mod n). Hence Si, ... , Sn are distinct 
(mod n) and so one of them is divisible by n. Since Si ¢ 0 (mod n) for 1 ~ i ~ n -1, 
we have n I Sn. 

5. Let A' be the foot of the altitude on the side BC of 6.ABC. The circle with 
diameter AA' intersects the side AB at the points A and D, and the side AC at the 
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points A and E. Prove that the circumcentre of 6.ABC lies on the line determined 
by the altitude on the side DE of 6.ADE. 

Solved by Charmaine Sia (Raffles Junior College), Teo Weihao {National Junior Col­
lege) and Robert Pargeter (UK). We present the similar solutions of Weihao and 
Charmaine. 

Let F be the foot of the altitude from A onto DE, 0 be the midpoint of AA' and 
0' be the circumcentre of 6.ABC. To prove that 0' lies on AF, we merely need to show 
that LBAF = 90°- LACB. This follows readily from LADE= LAA' E = LACB. 

A 

A' 

6. In the cellar of a castle 7 dwarfs protect their treasure. The treasure is behind 10 
doors and every door has 3 locks. All locks are different from each other. Every dwarf 
has the keys for some locks. Any four dwarfs together have keys for all the locks. 
Prove that there exist three dwarfs who together have the keys for all the locks. 

Solved by Teo Weihao {National Junior College), Andre Kueh {Hwa Chong Junior 
College), Ong Xing Gong, Ernest Chong, Joel Tay (Raffles Junior College), Kenneth 
Tay {Anglo-Chinese Junior College) who gave similar solutions. 

Consider each lock in turn. If there are less than 4 dwarfs with keys to the 
lock, then there exist 4 dwarfs who do not have the key to the lock which gives a 
contradiction. Thus there are at least 4 dwarfs with the key to the lock. Hence there 
is at most one choice of 3 dwarfs with no key to the lock. But there are G) = 35 
choices of 3 dwarfs but only 30 locks so there is at least one choice of 3 dwarfs who 
have keys to all the locks. 
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